CISSY: A station for preparation and surface/interface analysis of thin film materials and devices

Authors

  • Iver Lauermann Helmholtz-Zentrum Berlin für Materialien und Energie
  • Alexander Steigert Helmholtz-Zentrum Berlin für Materialien und Energie

DOI:

https://doi.org/10.17815/jlsrf-2-84

Abstract

The CISSY end station combines thin film deposition (sputtering, molecular beam epitaxy ambient-pressure methods) with surface and bulk-sensitive analysis (photo emission, x-ray emission, x-ray absorption) in the same UHV system, allowing fast and contamination–free transfer between deposition and analysis. It is mainly used for the fabrication and characterization of thin film devices and their components like thin film photovoltaic cells, water-splitting devices and other functional thin film materials.

References

Caballero, R., Nichterwitz, M., Steigert, A., Eicke, A., Lauermann, I., Schock, H., & Kaufmann, C. (2014). Impact of Na on MoSe2 formation at the CIGSe/Mo interface in thin-film solar cells on polyimide foil at low process temperatures. Acta Materialia, 63, 54 - 62.http://dx.doi.org/10.1016/j.actamat.2013.09.051

Fu, Y., Sáez-Araoz, R., Köhler, T., Krüger, M., Steigert, A., Lauermann, I., . . . Fischer, C.-H. (2013). Spray-ilgar ZnS nanodots/In2S3 as defect passivation/point contact bilayer buffer for Cu(In,Ga)(S,Se)2 solar cells. Solar Energy Materials and Solar Cells, 117, 293 - 299. http://dx.doi.org/10.1016/j.solmat.2013.06.007

Johnson, B., Klaer, J., Merdes, S., Gorgoi, M., Höpfner, B., Vollmer, A., & Lauermann, I. (2013). Limitations of near edge x-ray absorption fine structure as a tool for observing conduction bands in chalcopyrite solar cell heterojunctions. Journal of Electron Spectroscopy and Related Phenomena, 190, Part A, 42 - 46. http://dx.doi.org/10.1016/j.elspec.2013.01.007

Merdes, S., Malinen, V., Ziem, F., Lauermann, I., Schüle, M., Stober, F., . . . Schlatmann, R. (2014). Zn(O,S) buffer prepared by atomic layer deposition for sequentially grown Cu(In,Ga)(Se,S)2 solar cells and modules. Solar Energy Materials and Solar Cells, 126, 120 - 124. http://dx.doi.org/10.1016/j.solmat.2014.03.044

Muydinov, R., Steigert, A., Schönau, S., Ruske, F., Kraehnert, R., Eckhardt, B., . . . Szyszka, B. (2015). Water-assisted nitrogen mediated crystallisation of ZnO films. Thin Solid Films, 590, 177 - 183. http://dx.doi.org/10.1016/j.tsf.2015.07.034

Neuschitzer, M., Sanchez, Y., Olar, T., Thersleff, T., Lopez-Marino, S., Oliva, F., . . . Saucedo, E. (2015). Complex surface chemistry of kesterites: Cu/Zn reordering after low temperature postdeposition annealing and its role in high performance devices. Chemistry of Materials, 27(15), 5279-5287. http://dx.doi.org/10.1021/acs.chemmater.5b01473

Pistor, P., Greiner, D., Kaufmann, C. A., Brunken, S., Gorgoi, M., Steigert, A., . . . Lux-Steiner, M.-C. (2014). Experimental indication for band gap widening of chalcopyrite solar cell absorbers after potassium fluoride treatment.Applied Physics Letters, 105(6). http://dx.doi.org/10.1063/1.4892882

Sarmiento-Pérez, R., Botti, S., Schnohr, C. S., Lauermann, I., Rubio, A., & Johnson, B. (2014). Local versus global electronic properties of chalcopyrite alloys: X-ray absorption spectroscopy and ab initio calculations. Journal of Applied Physics, 116(9). http://dx.doi.org/10.1063/1.4893579


Cite article as: Helmholtz-Zentrum Berlin für Materialien und Energie. (2016). CISSY: A station for preparation and surface/ interface analysis of thin film materials and devices. Journal of large-scale research facilities, 2, A67. http://dx.doi.org/10.17815/jlsrf-2-84

Published

2016-04-18

Issue

Section

Articles

URN