JuSPARC - The Jülich Short-Pulsed Particle and Radiation Center





JuSPARC, the Jülich Short-Pulsed Particle and Radiation Center, is a laser-driven facility to enable research with short-pulsed photon and particle beams to be performed at the Forschungszentrum Jülich. The conceptual design of JuSPARC is determined by a set of state-of-the-art time-resolved instruments, which are designed to address the electronic, spin, and structural states of matter and their dynamic behaviour. From these instruments and experiments JuSPARC derives the need of operating several dedicated high pulse-power laser systems at highest possible repetition rates. They serve as core units for optimized photon up-conversion techniques generating the light pulses for the respective experiments. The applications also include experiments with spin polarized particle beams, which require the use of laser-based polarized gas targets. Thus, in its rst stage JuSPARC comprises four driving laser systems, called JuSPARC_VEGA, JuSPARC_DENEB, JuSPARC_SIRIUS and JuSPARC_MIRA, which are outlined in this article.


Büscher, M., Hützen, A., Engin, I., Thomas, J., Pukhov, A., Engels, R., . . . Sofikitis, D. (2019). Polarized proton beams from a laser-plasma accelerators. Int. J. Mod. Phys. A, 34, 1942028. http://dx.doi.org/10.1142/S0217751X19420284

Chiang, C.-T., Blättermann, A., Huth, M., Kirschner, J., & Widdra, W. (2012). High-order harmonic generation at 4 mhz as a light source for time-of-flight photoemission spectroscopy. Appl. Phys. Lett., 101(7), 071116. http://dx.doi.org/10.1063/1.4746264

Engels, R., Emmerich, R., Grigoryev, K., Paetz gen. Schieck, H., Ley, J., Mikirtytchiants, M., . . . Vassiliev, A. (2005). Background reduction by a getter pump around the ionization volume of a Lambshift polarimeter and possible improvements of polarized ion sources. Rev. Sc. Instrum., 76, 053305. http://dx.doi.org/10.1063/1.1898923

Engels, R., Emmerich, R., Ley, J., Tenckhoff, G., Paetz gen. Schieck, H., Mikirtytchiants, M., . . . Vassiliev, A. (2003). Precision Lamb-shift polarimeter for polarized atomic and ion beams. Rev. Sc. Instrum., 74, 4607. http://dx.doi.org/10.1063/1.1619550

Fabio Frassetto, P. M., & Poletto, L. (2014). Grating configurations for the spectral selection of coherent ultrashort pulses in the extreme-ultraviolet. Photonics, 1, 442 - 454. http://dx.doi.org/10.3390/photonics1040442

Gang, S.-g., Adam, R., Plötzing, M., von Witzleben, M., Weier, C., Parlak, U., . . . Oppeneer, P. M. (2018, Feb). Element-selective investigation of femtosecond spin dynamics in nipd magnetic alloys using extreme ultraviolet radiation. Phys. Rev. B, 97, 064412. http://dx.doi.org/10.1103/PhysRevB.97.064412

Hützen, A., Thomas, J., Böker, J., Engels, R., Gebel, R., Lehrach, A., . . . Büscher, M. (2019). Polarized proton beams from laser-induced plasmas. High Power Laser Science and Engineering, 7, e16. http://dx.doi.org/10.1017/hpl.2018.73

Ielmini, D., & Waser, R. (2016). Resistive switching: From fundamentals of nanoionic redox processes to memristive device applications [Edited Book]. Wiley. La-O-Vorakiat, C., Turgut, E., Teale, C., Kapteyn, H., Murnane, M., Mathias, S., . . . Silva, T. (2012).Ultrafast demagnetization measurements using extreme ultraviolet light: Comparison of electronic and magnetic contributions. Phys. Rev. X, 2, 011005. http://dx.doi.org/10.1103/PhysRevX.2.011005

Mathias, S., La-O-Vorakiat, C., Grychtol, P., Granitzka, P., Turgut, E., Shaw, J., . . . Kapteyn, H. P. (2012). Probing the timescale of the exchange interaction in a ferromagnetic alloy. Proc. Natl. Acad. Sci., 109,


Rudolf, D., La-O-Vorakiat, C., Battiato, M., Adam, R., Shaw, J. M., Turgut, E., . . . Oppeneer, P. (2012). Ultrafast magnetization enhancement in metallic multilayers driven by superdiffusive spin current. Nat. Comm., 3, 1037. http://dx.doi.org/10.1038/ncomms2029

Russbueldt, P., Hoffmann, D., Höfer, M., Löhring, J., Luttmann, J., Meissner, A., . . . Poprawe, R. (2015). Innoslab amplifiers. IEEE J. Sel. Top. Quantum Electron., 21(1), 447-463. http://dx.doi.org/10.1109/JSTQE.2014.2333234

Thomas, J., Hützen, A., Lehrach, A., Pukhov, A., Liangliang, L., Wu, Y., & Büscher, M. (2019). Scalig laws for the (de-)polarization time of relativistic particle beams in strong fields. Publication in preparation for Phys. Rev. Accel. Beams.

Tsymbal, E., & Zutic, I. (2012). Spin transport and magnetism [Book]. Boca Raton: CRC Press.

Tusche, C., Ellguth, M., Ünal, A. A., Chiang, C.-T., Winkelmann, A., Krasyuk, A., . . . Kirschner, J. (2011). Spin resolved photoelectron microscopy using a two-dimensional spin-polarizing electron mirror. Appl. Phys. Lett., 99(3), 032505. http://dx.doi.org/10.1063/1.3611648

Tusche, C., Krasyuk, A., & Kirschner, J. (2015). Spin resolved bandstructure imaging with a high resolution momentum microscope. Ultramicroscopy, 159, 520 - 529. (Special Issue: LEEM-PEEM 9) http://dx.doi.org/https://doi.org/10.1016/j.ultramic.2015.03.020

Weitenberg, J., Vernaleken, A., Schulte, J., Ozawa, A., Sartorius, T., Pervak, V., . . . Hänsch, T.W. (2017). Multi-pass-cell-based nonlinear pulse compression to 115 fs at 7.5 mj pulse energy and 300 w average power. Opt. Express, 25(17), 20502–20510.http://dx.doi.org/10.1364/OE.25.020502

Wu, Y., Ji, L., Geng, X., abd Nengwen Wang, Q. Y., Feng, B., Guo, Z., . . . Li, R. (2019). Polarized electron-beam acceleration driven by vortex laser pulses. New J. Phys., 21(7), 073052.http://dx.doi.org/10.1088/1367-2630/ab2fd7

Wu, Y., Ji, L., Geng, X., Yu, Q., Wang, N., Feng, B., . . . Li, R. (2019). Polarized electron beam generation in plasma-driven wakefield acceleration. Phys. Rev. E, 100, 043202. http://dx.doi.org/10.1103/PhysRevE.100.043202

Cite article as: Forschungszentrum Jülich. (2020). JuSPARC — The Jülich Short-Pulsed Particle and Radiation Center. Journal of large-scale research facilities, 6, A138. http://dx.doi.org/10.17815/jlsrf-6-174