Manned submersible „JAGO“

Authors

  • Karen Hissmann Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR)
  • Jürgen Schauer Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR)

DOI:

https://doi.org/10.17815/jlsrf-3-157

Abstract

The manned submersible „JAGO“ is a human occupied underwater vehicle (HOV) designed for personal exploration and research in all types of aquatic systems and habitats. The seafloor along the continental shelf and slopes within the ocean twilight zone is JAGO’s main target area. The DNV-GL classed 2-person submersible has a maximum operating depth of 400 m. The two occupants, the pilot and one observer, are seated at 1 Atmosphere in a steel pressure hull with two large acrylic windows. The submersible’s small size and lightweight construction (3 T) allows worldwide operations from on board a wide variety of vessels as well as transport in a single standard 20-foot container together with all support equipment. Typical applications include personal observation of the sea bed and water column, video and photo documentation, selective non-intrusive sampling, placement of sensors and experiments, underwater inspection, as well as location and recovery of objects

References

Berndt, C., Feseker, T., Treude, T., Krastel, S., Liebetrau, V., Niemann, H., . . . Steinle, L. (2014). Tempo-ral Constraints on Hydrate-Controlled Methane Seepage off Svalbard. Science, 343(6168), 284–287. http://dx.doi.org/10.1126/science.1246298

Colonna, M., Casanova, J., Dullo, W.-C., & Camoin, G. (1996). Sea-Level Changes and d 18O Record for the Past 34,000 yr from Mayotte Reef, Indian Ocean. Quaternary Research, 46(3), 335-339. http://dx.doi.org/10.1006/qres.1996.0071

de Ronde, C., Stoffers, P., Garbe-Schönberg, D., Christenson, B., Jones, B., Manconi, R., . . . Battershill, C. (2002). Discovery of active hydrothermal venting in Lake Taupo, NewZealand. Journal of Volcanology and Geothermal Research, 115(3-4), 257 - 275. http://dx.doi.org/10.1016/S0377-0273(01)00332-8

Form, A. U., & Riebesell, U. (2012). Acclimation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa. Global Change Biology, 18(3), 843–853. http://dx.doi.org/10.1111/j.1365-2486.2011.02583.x

Freiwald, A., Hühnerbach, V., Lindberg, B., Wilson, J. B., & Campbell, J. (2002). The Sula Reef Complex, Norwegian shelf. Facies, 47(1), 179–200. http://dx.doi.org/10.1007/BF02667712

Fricke, H., & Hissmann, K. (1990). Natural habitat of the coelacanth. Nature, 346, 323-324. http://dx.doi.org/10.1038/351.6325

Fricke, H., & Hissmann, K. (1994). Home range and migrations of the living coelacanth Latimeria chalumnae. Marine Biology, 120(2), 171–180. http://dx.doi.org/10.1007/BF00349676

Fricke, H., Hissmann, K., Froese, R., Schauer, J., Plante, R., & Fricke, S. (2011). The population biology of the living coelacanth studied over 21 years. Marine Biology, 158(7), 1511–1522. http://dx.doi.org/10.1007/s00227-011-1667-x

Fricke, H., Hissmann, K., Schauer, J., Erdmann, M., Moosa, M., & Plante, R. (2000). Biogeography of the Indonesian coelacanths. Nature, 403, 38. http://dx.doi.org/10.1038/47400

Gori, A., Orejas, C., Madurell, T., Bramanti, L., Martins, M., Quintanilla, E., . . . Gili, J. M. (2013). Bathymetrical distribution and size structure of cold-water coral populations in the Cap de Creus and Lacaze-Duthiers canyons (northwestern Mediterranean). Biogeosciences, 10(3), 2049–2060. http://dx.doi.org/10.5194/bg-10-2049-2013

Graves, C. A., James, R. H., Sapart, C. J., Stott, A. W., Wright, I. C., Berndt, C., . . . Connelly, D. P. (2017). Methane in shallow subsurface sediments at the landward limit of the gas hydrate stability zone offshore western Svalbard. Geochimica et Cosmochimica Acta, 198, 419 - 438. http://dx.doi.org/10.1016/j.gca.2016.11.015

Grinyó, J., Gori, A., Ambroso, S., Purroy, A., Calatayud, C., Dominguez-Carrió, C., . . . Gili, J.-M. (2016). Diversity, distribution and population size structure of deep Mediterranean gorgonian assemblages (Menorca Channel, Western Mediterranean Sea). Progress in Oceanography, 145, 42 - 56. http://dx.doi.org/10.1016/j.pocean.2016.05.001

Hannington, M., Herzig, P., Stoffers, P., Scholten, J., Botz, R., Garbe-Schönberg, D., . . . Roest, W. (2001). First observations of high-temperature submarine hydrothermal vents and massive anhydrite deposits off the north coast of Iceland. Marine Geology, 177(3-4), 199 - 220. http://dx.doi.org/10.1016/S0025-3227(01)00172-4

Hennige, S. J., Morrison, C. L., Form, A. U., Büscher, J., Kamenos, N. A., & Roberts, J. M. (2014). Self-recognition in corals facilitates deep-sea habitat engineering. Scientific Reports, 4, 6782. http://dx.doi.org/10.1038/srep06782

Hissmann, K. (2005). In situ observations on benthic siphonophores (Physonectae: Rhodaliidae) and descriptions of three new species from Indonesia and South Africa. Systematics and Biodiversity, 2(3), 223-249. http://dx.doi.org/10.1017/S1477200004001513

Hissmann, K., Fricke, H., Schauer, J., Ribbink, A. J., Roberts, M., Sink, K., & Heemstra, P. (2006). The South African coelacanths - an account of what is known after three submersible expeditions. South African Journal of Science, 102(9-10), 491-500. Retrieved from http://journals.co.za/content/sajsci/102/9-10/EJC96593

Huber, H., Hohn, M., Rachel, R., Fuchs, T., V.C., W., & Stetter, K. (2002). A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature, 417, 63-67. http://dx.doi.org/10.1038/417063a

Jessen, G. L., Lichtschlag, A., Struck, U., & Boetius, A. (2016). Distribution and Composition of Thiotrophic Mats in the Hypoxic Zone of the Black Sea (150–170 m Water Depth, Crimea Margin). Frontiers in Microbiology, 7, 1011. http://dx.doi.org/10.3389/fmicb.2016.01011

Kuhn, T., Herzig, P., Hannington, M., Garbe-Schönberg, D., & Stoffers, P. (2003). Origin of fluids and anhydrite precipitation in the sediment-hosted Grimsey hydrothermal field north of Iceland. Chemical Geology, 202(1-2), 5 - 21. http://dx.doi.org/10.1016/S0009-2541(03)00207-9

Lampert, K. P., Fricke, H., Hissmann, K., Schauer, J., Blassmann, K., Ngatunga, B. P., & Schartl, M. (2012). Population divergence in East African coelacanths. Current Biology, 22(11), R439-R440. http://dx.doi.org/10.1016/j.cub.2012.04.053

Orejas, C., Gori, A., Lo Iacono, C., Puig, P., Gili, J.-M., & Dale, M. (2009). Cold-water corals in the Cap de Creus canyon, northwestern Mediterranean: spatial distribution, density and anthropogenic impact. Marine Ecology Progress Series, 397, 37-51. http://dx.doi.org/10.3354/meps08314

Purser, A., Orejas, C., Gori, A., Tong, R., Unnithan, V., & Thomsen, L. (2013). Local variation in the distribution of benthic megafauna species associated with cold-water coral reefs on the Norwegian margin. Continental Shelf Research, 54,37 - 51. http://dx.doi.org/10.1016/j.csr.2012.12.013

Reitner, J., Peckmann, J., Reimer, A., Schumann, G., & Thiel, V. (2005). Methane-derived carbonate build-ups and associated microbial communities at cold seeps on the lower Crimean shelf (Black Sea). Facies, 51(1), 66–79. http://dx.doi.org/10.1007/s10347-005-0059-4

Rüggeberg, A., Flögel, S., Dullo, W.-C., Hissmann, K., & Freiwald, A. (2011). Water mass characteristics and sill dynamics in a subpolar cold-water coral reef setting at Stjernsund, northern Norway. Marine Geology, 282(1-2), 5 - 12. http://dx.doi.org/10.1016/j.margeo.2010.05.009

Schartl, M., Hornung, U., Hissmann, K., Schauer, J., & Fricke, H. (2005). Genetics: Relatedness among East African coelacanths. Nature, 435, 901. http://dx.doi.org/10.1038/435901a

Schneider von Deimling, J., Linke, P., Schmidt, M., & Rehder, G. (2015). Ongoing methane discharge at well site 22/4b (North Sea) and discovery of a spiral vortex bubble plume motion. Marine and Petroleum Geology, 68, Part B, 718 - 730. http://dx.doi.org/10.1016/j.marpetgeo.2015.07.026

Schöttner, S., Wild, C., Hoffmann, F., Boetius, A., & Ramette, A. (2012, 03). Spatial Scales of Bacterial Diversity in Cold-Water Coral Reef Ecosystems. PLOS ONE, 7(3), 1-11. http://dx.doi.org/10.1371/journal.pone.0032093

Spezzaferri, S., Rüggeberg, A., Stalder, C., & Margreth, S. (2013). Benthic Foraminifer Assemblages from Norwegian Cold-Water Coral Reefs. Journal of Foraminiferal Research, 43(1), 21–39. http://dx.doi.org/10.2113/gsjfr.43.1.21

Stevenson, I. R., & Bamford, M. K. (2003). Submersible-based observations of in-situ fossil tree trunks in Late Cretaceous seafloor outcrops, Orange Basin, western offshore, South Africa. South African Journal of Geology, 106(4), 315–326. http://dx.doi.org/10.2113/106.4.315

Teichert, S.,Woelkerling,W., Rüggeberg, A., Wisshak, M., Piepenburg, D., Meyerhöfer, M., . . . Freiwald, A. (2012). Rhodolith beds (Corallinales, Rhodophyta) and their physical and biological environment at 80 degrees 31 ‘N in Nordkappbukta (Nordaustlandet, Svalbard Archipelago, Norway). Phycologia, 51(4), 371-390. http://dx.doi.org/10.2216/11-76.1

Treude, T., Knittel, K., Blumenberg, M., Seifert, R., & Boetius, A. (2005). Subsurface microbial methanotrophic mats in the Black Sea. Applied and Environmental Microbiology, 71(10), 6375-6378. http://dx.doi.org/10.1128/AEM.71.10.6375-6378.2005

Cite article as: GEOMAR Helmholtz-Zentrum für Ozeanforschung. (2017). Manned submersible „JAGO“. Journal of large-scale research facilities, 3, A110. http://dx.doi.org/10.17815/jlsrf-3-157

Published

2017-04-27

Issue

Section

Articles

URN