

Journal of large-scale research facilities, 1, A25 (2015)

http://dx.doi.org/10.17815/jlsrf-1-52

Published: 19.08.2015

PLEPS: Pulsed low energy positron system

Heinz Maier-Leibnitz Zentrum Universität der Bundeswehr München

Instrument Scientists:

- Werner Egger, LRT2, Universität der Bundeswehr München, Neubiberg, Germany, phone: +49(0) 89 289 14609, email: werner.egger@unibw.de

Abstract: PLEPS, operated by the Universität der Bundeswehr München, located at NEPOMUC, is a unique tool for depth profiling of defects with positron annihilation lifetime spectroscopy using a pulsed positron beam of variable energy.

1 Introduction

Positron lifetime measurements allow to determine type and size of open volume defects (such as vacancies, vacancy-clusters, dislocations, grain boundaries etc., and free volumes in polymers) in a wide variety of materials and provide information on defect-concentration. In combination with a monoenergetic positron beam of variable energy depth-resolved defect analysis becomes possible.

2 Typical applications

- · Defect identification in thin layers and layered structures of semiconductors and insulators
- Radiation induced defects in materials for fusion and fission reactors
- Characterisation of free volumes in polymers and glasses

3 Technical Data

3.1 Beam properties

- Positron implantation energy: E = 0.5 20 keV
- Beam spot $\emptyset \sim 1 \text{ mm}$
- Count rate: $\sim 5000 10000$ cps

Figure 1: Instrument PLEPS at NEPOMUC (Copyright by W. Schürmann, TUM).

3.2 Sample

• Limited to $5 \times 5 \text{ mm}^2 - 9 \times 9 \text{ mm}^2$

3.3 Typical measurement times

• < 10 min per spectrum

(> 3 · 10⁶ counts in the spectrum)

(> $3 \cdot 10^6$ counts in the spectrum) • Depth-profile: 4 - 5 h

(15 – 20 implantation energies, $> 3 \cdot 10^6$ counts in the spectrum)

Time-window: 20 ns or 40 ns
Time-resolution: 260 - 280 ps
Peak/ background > 50000: 1

